云服务器免费试用

正则表达式生成器(正则表达式生成器 mysql)

服务器知识 0 504

本文目录:

  • 1、Flex是什么
  • 2、设整形变量x=10,则表达式2
  • 3、Python有哪些技术上的优点?比其他语言好在哪儿?
  • 4、一样的正则表达式为什么在自己电脑上运行是空的。代码如下

Flex是什么

flex (fast lexical analyser generator) 是 Lex 的另一个替代品。它经常和自由软件 Bison语法分析器生成器 一起使用。Flex 最初由 Vern Paxson 于 1987 年用 C语言 写成。 Flex 手册里对 Flex 描述如下: “flex是一个生成扫描器的工具,能够识别文本中的词法模式。flex读入给定的输入文件,如果没有给定文件名的话,则从标准输入读取,从而获得一个关于需要生成的扫描器的描述。此描述叫做 规则,由正则表达式和 C代码对组成。flex 的输出是一个 C 代码文件--lex.yy.c--其中定义了 yylex() 函数。编译输出文件并且和 -lfl库链接生成一个可执行文件。当运行可执行文件的时候,它分析输入文件,为每一个正则表达式寻找匹配。当发现一个匹配时,它执行与此正则表达式相关的 C代码。” 一个相似的,用 C++语言 的词法分析器生成器是 flex++,包含在 flex 软件包里。 Flex 不是 GNU 工程,但是 GNU 为 Flex 写了手册。

设整形变量x=10,则表达式2

编辑

:kenwoodjw

对于机器学习算法工程师而言,Python是不可或缺的语言,它的优美与简洁令人无法自拔。那么你过Python编程面试题吗?从Python基础到网页爬虫你是否能全方位Hold住?今天,为读者们推荐一个Github项目。

在这个项目中, kenwoodjw 准备了近 300 道 Python 面试题,同时还包含解决方案与代码。主要从 Python 基础、高级语句、网页应用、数据库和测试等角度提问,读者可只自己需要的领域。目前该项目已经完成了很多基础和高级面试题,本文主要摘取一些 Python 面试题供大家参考。

项目地址:

总体而言,项目有近300道面试题。虽然该项目刚开始创建,但很多Python面试题都已经提供决方案。如下所示为面试题示例:

本文截取了一些面试题及解决方案:

Python 基础文件操作模块与包数据类型企业面试题Python 高级设计模式系统编程如果希望机器学习面试题,可阅读:春招已近,这份GitHub万星的ML算法面试大全请收下

Python 基础

什么是 Python?根据Python 创建者 Guido an Rossum 所言,Python是一种高级编程语言,其设计的核心理念是代码的易读性,以及允许编程者通过若干行代码轻松表达想法创意。实际上,很多开发者选择学习 Python 的首要原因是其编程的优美性,用它编码和表达想法非常自然。

文件操作

1.若有一个jsonline格式的文件file.txt,大小约为10K,我们的处理方式为:

defget_lines(): l = []with open('file.txt', 'rb') as f:for eachline in f: l.append(eachline)return lif __name__ == '__main__':for e in get_lines(): process(e) #处理每一行数据

现在要处理一个大小为10G的file.txt文件,但是内存只有4G。如果在只修改get_lines 函数而其他代码保持不变的情况下,应该如何实现?需要考虑的问题都有那些?

defget_lines(): l = []with open('file.txt','rb') as f: data = f.readlines(60000) l.append(data)yield l

要考虑的问题有:内存只有4G,无法一次性读入10G文件。而分批读入数据要记录每次读入数据的位置,且分批每次读取得太小会在读取操作上花费过多时间。

模块与包

2.如何输入日期, 判断这一天是这一年的第几天?

import datetimedefdayofyear(): year = input("请输入年份: ") month = input("请输入月份: ") day = input("请输入天: ") date1 = datetime.date(year=int(year),month=int(month),day=int(day)) date2 = datetime.date(year=int(year),month=1,day=1)return (date1-date2).days+1数据类型

3.如何反转字符串"aStr"?

print("aStr"[::-1])4.下面代码的输出结果将是什么?会报错吗?

list = ['a','b','c','d','e']print(list[10:])

代码将输出[],并不会产生IndexError 错误。如果尝试用超出成员的个数的index来获取某个列表的成员,那就会报错。例如,尝试获取 list[10] 和之后的成员,会导致IndexError。然而当我们尝试获取列表的切片时,开始的index超过成员个数并不会产生IndexError,而是仅仅返回一个空列表。因为并不会报错,所以这种Bug很难追踪到。

5.请写出一段Python代码,实现删除list里面的重复元素?

l1 = ['b','c','d','c','a','a']l2 = list(set(l1))print(l2)用list类的sort方法可以保证顺序不变:

l1 = ['b', 'c', 'd', 'c', 'a', 'a']l2 = list(set(l1))l2.sort(key=l1.index)print(l2)也可以这样写:

l1 = ['b', 'c', 'd', 'c', 'a', 'a']l2 = sorted(set(l1), key=l1.index)print(l2)

也可以用遍历:

l1 = ['b', 'c', 'd', 'c', 'a', 'a']l2 = []for i in l1:ifnot i in l2: l2.append(i)print(l2)企业面试题

6.设计实现遍历目录与子目录,抓取.pyc文件

第一种方法:

import osdefgetFiles(dir, suffix): res = []for root, dirs, files in os.walk(dir):for filename in files: name, suf = os.path.splitext(filename)if suf == suffix: res.append(os.path.join(root, filename)) print(res)getFiles("./", '.pyc')

第二种方法:

import osdefpick(obj):try:if obj.[-4:] == ".pyc": print(obj)except:returnNonedefscan_path(ph): file_list = os.listdir(ph)for obj in file_list:if os.path.isfile(obj): pick(obj)elif os.path.isdir(obj): scan_path(obj)if __name__ == '__main__': path = input('输入目录') scan_path(path)

7.如何反转一个整数,例如-123-- -321?

classSolution(object):defreerse(self, x):if-10 x=""return x str_x = str(x)if str_x[0] != "-": str_x = str_x[::-1] x = int(str_x)else: str_x = str_x[1:][::-1] x = int(str_x) x = -xreturn x if-2147483648 x=""if __name__ == '__main__': s = Solution() reerse_int = s.reerse(-120) print(reerse_int)

Python高级

Python高级包含很多重要的模块,例如函数、类和实例、系统编程、正则表达式、网络编程等等。根据这些高级属性,Python可用于数据科学、网页开发、机器学习等等。

设计模式

8.对设计模式的理解,简述你的设计模式?

设计模式是为我们经常会碰到的一些编程问题构建的可重用解决方案,它是总结性和经优化的。一个设计模式并不像一个类或一个库那样能够直接作用于我们的代码,反之,设计模式更为高级,它是一种在特定情形下实现的方法模板。常见的是工厂模式和单例模式。

单例模式应用的场景一般发现在以下条件下: 资源共享的情况下,避免由于资源操作时导致的性能或损耗等,如日志文件,应用配置。控制资源的情况下,方便资源之间的互相通信。

9.生成器和迭代器的区别?

迭代器是一个更抽象的概念,任何对象,如果它的类有 next 方法和 iter 方法返回自己本身,它就是可迭代的。对于 string、list、dict、tuple 等这类容器对象,使用for循环遍历是很方便的,for 语句实际上会对容器对象调用 iter() 函数。iter() 会返回一个定义了 next() 方法的迭代器对象,它在容器中逐个访问容器内元素,在没有后续元素时,next()会抛出一个StopIteration异常。

生成器(Generator)是创建迭代器的简单而强大的工具。它们写起来就像是正规的函数,只是在需要返回数据的时候使用yield语句。生成器能做到迭代器能做的所有事,而且因为自动创建iter()和next()方法,生成器显得特别简洁,而且生成器也是高效的,使用生成器表达式取代列表解析可以同时节省内存。除了创建和保存程序状态的自动方法,当发生器终结时,还会自动抛出StopIteration异常。

10.对装饰器的理解,你能写出一个计时器装饰器,它能记录函数的执行时间吗?

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。

import timedeftimeit(func):defwrapper(): start = time.clock() func() end = time.clock() print('used:',end-start)return wrapper @timeitdeffoo(): print('in foo()'foo())

系统编程

11.介绍一下你的进程。

程序运行在操作系统上的一个实例,就称之为进程。进程需要相应的系统资源:内存、时间片、pid。创建进程: 首先要导入multiprocessing中的Process;创建一个Process对象;创建Process对象时,可以传递参数。

p = Process(target=XXX, args=(tuple,), kwargs={key: alue})target = XXX # 指定的任务函数,不用加()args = (tuple,)kwargs = {key: alue} # 给任务函数传递的参数使用start()启动进程 结束进程 给子进程指定函数传递参数Demo

import osfrom mulitprocessing import Processimport timedefpro_func(name, age, **kwargs):for i in range(5): print("子进程正在运行中,name=%s,age=%d,pid=%d" % (name, age, os.getpid())) print(kwargs) time.sleep(0.2)if __name__ == "__main__":# 创建Process对象 p = Process(target=pro_func, args=('小明', 18), kwargs={'m': 20})# 启动进程 p.start() time.sleep(1)# 1秒钟之后,立刻结束子进程 p.terminate() p.join()12.谈谈你对多进程、多线程、以及协程的理解,项目是否用?

进程:一个运行的程序(代码)就是一个进程,没有运行的代码叫程序,进程是系统资源分配的最小单位,进程拥有自己独立的内存空间,所有进程间数据不共享,开销大。线程: cpu调度执行的最小单位,也叫执行路径,不能独立存在,依赖进程存在,一个进程至少有一个线程,叫主线程,而多个线程共享内存可以极大地提高了程序的运行效率。协程: 是一种用户态的轻量级线程,协程的调度完全由用户控制,协程拥有自己的寄存器上下文和栈。协程调度时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操中栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。

关于系统编程还有很多问题,例如:

本文为编辑,请联系本获得授权。

Python有哪些技术上的优点?比其他语言好在哪儿?

Python有哪些技术上的优点

1. 面向对象和函数式

从根本上讲,Python是一种面向对象的语言。它的类模型支持多态、运算符重载和多重继承等高级概念,并且以Python特有的简洁的语法和类型为背景,OOP十分易于使用。事实上,即使你不懂这些术语,仍会发现学习Python比学习其他OOP语言要容易得多。

除了作为一种强大的代码组织和重用手段以外,Python的OOP本质使它成为其他面向对象系统语言的理想脚本工具。例如,通过适当的粘接代码,Python程序可以对C++、Java和C#的类进行子类的定制。

OOP只是Python的一个选择而已,这一点非常重要。即使不能立马成为一个面向对象高手,但你同样可以继续深入学习。就像C++一样,Python既支持面向对象编程也支持面向过程编程的模式。如果条件允许,其面向对象的工具可以立即派上用场。这对策略开发模式十分有用,该模式常用于软件开发的设计阶段。

除了最初的过程式(语句为基础)和面向对象(类为基础)的编程范式,Python在最近几年内置了对函数式编程的支持——一个多数情况下包括生成器、推导、闭包、映射、装饰器、匿名lambda函数和第一类函数对象的集合。这是对其本身OOP工具的补充和替代。

2. 免费

Python的使用和分发是完全免费的。就像其他的开源软件一样,例如,Tcl、Perl、Linux和Apache。你可以从Internet上免费获得Python的源代码。你可以不受限制地复制Python,或将其嵌入你的系统或者随产品一起发布。实际上,如果你愿意的话,甚至可以销售它的源代码。

但请别误会:“免费”并不代表“没有支持”。恰恰相反,Python的在线社区对用户需求的响应和商业软件一样快。而且,由于Python完全开放源代码,提高了开发者的实力,并产生了一个很大的专家团队。

尽管研究或改变一种程序语言的实现并不是对每一个人来说都那么有趣,但是当你知道如果需要的话可以做到这些,该是多么的令人欣慰。你不需要去依赖商业厂商的智慧,因为最终的文档和终极的净土(源码)任凭你的使用。

Python的开发是由社区驱动的,是Internet大范围的协同合作努力的结果。Python语言的改变必须遵循一套规范而有约束力的程序(称作PEP流程),并需要经过规范的测试系统进行彻底检查。正是这样才使得Python相对于其他语言和系统可以保守地持续改进。

尽管Python 2.X和Python 3.X版本之间的分裂有力并蓄意地破坏了这项传统,但通常它仍然体现在Python的这两个系列内部。

3. 可移植

Python的标准实现是由可移植的ANSI C编写的,可以在目前所有主流平台上编译和运行。例如,如今从掌上电脑(PDA)到超级计算机,随处可见 Python的运行。Python可以在下列平台上运行(这里只是部分列表):

Linux和UNIX系统

微软Windows(所有现代版本)

Mac OS(包括OS X 和经典版)

BeOS、OS/2、VMS和QNX

实时操作系统,例如VxWorks

Cray超级计算机和IBM大型机

运行Palm OS、PocketPC和Linux的PDA

运行 Symbian OS和Windows Mobile 的移动电话

游戏终端和iPod

运行谷歌安卓系统和苹果iOS系统的平板和智能手机

以及更多

除了语言解释器本身以外,Python发行时自带的标准库和模块在实现上也都尽可能地考虑到了跨平台的移植性。此外,Python程序自动编译成可移植的字节码,这些字节码在已安装兼容版本Python的平台上运行的结果都是相同的。

这些意味着Python程序的核心语言和标准库可以在Linux、Windows和其他带有Python解释器的平台上无差别地运行。大多数Python外围接口都有平台相关的扩展(例如COM支持Windows),但是核心语言和库在任何平台都一样。

就像之前我们提到的那样,Python还包含了一个叫作tkinter(Tkinter的2.X版本)的Tk GUI工具包,它可以使Python程序实现功能完整的,无须做任何修改即可在所有主流GUI桌面平台运行的用户图形界面。

4. 功能强大

从语言特性的角度来看,Python是一个混合体。它丰富的工具集使它介于传统的脚本语言(如Tcl、Scheme和Perl)和系统语言(如C、C++和Java)之间。Python提供了所有脚本语言的简单和易用性,并且具有那些在编译语言中才能找到的高级软件工程工具。

不像其他脚本语言不同,这种结合使Python在长期大型的开发项目中十分有用。下面是一些Python工具箱中的工具简介:

动态类型

Python在程序运行过程中跟踪对象的类型,不需要代码中进行关于复杂的类型和大小的声明。事实上,Python中没有类型或变量声明这种做法。因为Python代码不约束数据的类型,它往往自动地应用了一种广义上的对象。

自动内存管理

Python自动为对象分配空间,并且当对象不再使用时将自动撤销空间(“垃圾回收”),当需要时自动扩展或收缩。正如你将学到的,Python能够帮你完成底层的内存管理。

大型程序支持

为了能建立更大规模的系统,Python包含了模块、类和异常等工具。这些工具允许你把系统组织为组件,使用OOP重用并定制代码,并以一种优雅的方式处理事件和错误。前面提到的Python函数式编程工具,提供了实现相同目标的其他方法。

内置对象类型

Python提供了常用的数据结构作为语言的基本组成部分。例如,列表(list)、字典(dictionary)、字符串(string)。我们将会看到,它们灵活并易于使用。例如,内置对象可以根据需求扩展或收缩,可以任意地组织复杂的信息等。

内置工具

为了对以上对象类型进行处理,Python自带了许多强大的标准操作,包括拼接(concatenation)、分片(slice)、排序(sort)和映射(mapping)等。

库工具

为了完成更多特定的任务,Python预置了许多预编码的库工具,从正则表达式匹配到网络都支持。当你掌握了语言本身,就能在应用级的操作中使用Python的库工具。

第三方工具

由于Python是开源的,它鼓励开发者提供Python内置工具之外的预编码工具。你可以在网上找到COM、图像处理、数值编程、XML、数据库访问等许多免费的支持工具。

除了这一系列的Python工具外,Python保持了相当简洁的语法和设计。综合这一切得到的就是一个具有脚本语言所有可用性的强大编程工具。

请点击输入图片描述

5. 可混合

Python程序可以以多种方式轻易地与其他语言编写的组件“粘接”在一起。例如,Python的C语言API可以帮助Python程序灵活地调用C程序。这意味着可以根据需要给Python程序添加功能,或者在其他环境系统中使用Python。

例如,将Python与C或者C++写成的库文件混合起来,使Python成为一个前端语言和定制工具。就像之前我们所提到过的那样,这使Python成为一个很好的快速原型工具;系统可以在开发初期出于速度考虑使用Python实现,然后转移至C,根据不同时期性能的需要逐步实现系统。

6. 相对简单易用

同其他语言(如C++、Java和C#)相比,Python编程对大多数用户来讲出奇得简单。要运行Python程序,你只需简单地键入Python程序并运行就可以了。不需要其他语言(如C或C++)所必需的编译和链接等中间步骤。

Python可立即执行程序,这形成了一种交互式编程体验和不同情况下快速调整的能力,往往在修改代码后几乎能立即看到程序改变后的效果。

当然,开发周期短仅仅是Python易用性的一方面的体现。Python提供了简洁的语法和强大的内置工具。实际上,Python曾被称为“可执行的伪代码”。由于它减少了其他工具常见的复杂性,在实现相同的功能时,Python程序比采用其他流行语言编写的程序更为简单、小巧,也更灵活。

请点击输入图片描述

7. 相对简单易学

这一部分引出了本书的重点:尤其同其他广泛使用的编程语言比较时,Python语言的核心相当简单易学。实际上,如果你是一位有经验的程序员,你可以期望在几天内写出小规模的Python代码,你也许能在几个小时之内习得Python的一招一式,但是你并不能指望在如此短的时间内成为专家(忘掉市面上的那些宣传广告吧)。

当然,掌握任何像今天Python这样的充实主题都不是一件轻松事,我们将在本书的剩余部分致力于此项任务。但是为了掌握Python而进行的真正投资是非常值得的——最终你会获取几乎在每个计算机应用程序领域都适用的编程技能。此外,很多人还发现Python的学习曲线比其他的编程语言更加平缓。

这对于那些想学习语言以在工作中应用的专业人员来说是一个好消息,同样对于那些使用Python层进行定制和控制的系统的终端用户来说,也是一个好消息。如今,许多系统都依赖于这一事实:用户可以在没有或者得到很少支持的情况下就学到足够的Python知识以便当场增删他们的Python定制化代码。

此外,Python还孕育出一群不以编程为生而以编程为乐的用户,他们并不需要掌握全面的软件开发技巧。尽管Python还是有很多高级编程工具,但不论对初学者还是行家来说,Python的核心语言精髓仍是相当简单的。

8. 以Monty Python命名

好的,在讲完这么多技术方面的优势后,我想再揭露一个Python世界里面令人惊奇而保守良好的小秘密。

尽管Python的书和图标中有很多爬行动物,真相却是Python以英国喜剧组“Monty Python”命名——这是BBC 在20世纪70年代喜剧《Monty Python's Flying Circus》的制片方,也是至今仍在流行的少量包括《Monty Python and the Holy Grai》在内的大电影的制片方。Python的最初创作者是Monty Python的粉丝,这同其他许多的软件开发者一样(事实上,这两个领域存在某种对称性……)。

请点击输入图片描述

▲《Python学习手册》书封上的爬行动物

这段有趣的历史无疑增加了Python代码例子的幽默属性。例如,作为一般变量名命名传统的“foo”和“bar”在Python世界中变成了“spam”和“eggs”。而在Python中偶尔出现的“Brian”,“ni”和“shrubbery”表现得也同此类似。它甚至影响了Python的整个社区。

当然了,如果你对这部喜剧非常熟悉,就能体会这其中的笑点,但如果不熟悉则相反。你不必非得熟悉Monty Python这部剧来了解从剧中获得灵感的例子(包括你将在本书中看到的许多例子),但至少你现在知道它们的起源了。(嗨——我已经告诉你啦。)

02

Python和其他语言比较起来怎么样

最后,你也许已经知道了,人们往往将Python与Perl、Tcl和Javat等语言相比较。这部分总结这方面的一些普遍共识。

我想预先表明我个人并不喜欢通过诋毁竞争者来获胜——这在长期是行不通的,而且也不是这里的目的。此外,这并不是一场零和游戏——绝大多数的程序员在他们的职业生涯中都会使用许多语言。尽管如此,编程工具也展示出值得考虑的选择和权衡。毕竟,如果Python没有比它的竞争者提供更多的东西,那么它一开始就不会被人们使用了。

请点击输入图片描述

我们之前已经介绍过性能上的权衡,那么这里重点谈一下功能。尽管下面列举的这些语言也是值得学习和使用的有力工具,但人们通常认为Python:

比Tcl强大。Python强有力地支持“大规模编程”,使其适用于开发大型系统,它的应用程序库也更加丰富。

比Perl更具可读性。Python有着简洁的语法和简单连贯的设计,这反过来使得Python更具可读性和更易于维护,同时有助于减少程序bug。

比Java和C#更简单、更易于使用。Python是一门脚本语言,但Java和C#两者从像C++这样更加大型的OOP系统语言中继承了许多语法和复杂性。

比C++更简单、更易于使用。Python代码比等效的C++代码更加简单,长度只有其五分之一到三分之一。尽管作为脚本语言,Python有时能扮演许多不同的角色。

比C更加简单和高级。Python远离底层硬件架构从而降低了代码复杂性,拥有更好的组织结构,并比C(C++的祖先)更加友善。

比Visual Basic更强大,用途广泛,也更具备跨平台特性。Python是更加广泛使用的更丰富的语言,它的开源本质意味着它不可能被某一个公司所掌控。

比PHP更易懂并且用途更广。Python也用来构建Web站点,但是,它也应用于几乎每个计算机领域,从机器人到电影动画和游戏。

比JavaScript更强大和用途广泛。Python有一个更大的工具集,也并不是牢牢地束缚于Web开发。它也用于科学建模、仪器调试等。

比Ruby更具可读性,并更为人们所接受。Python的语法混乱更少,尤其在较复杂代码中,同时它的OOP对用户和和不太使用OOP的工程中是完全可选的。

比Lua更成熟和受到更广泛关注。Python更加庞大的特性集合和更加扩展的库支持给予其比Lua(一门和Tcl一样的嵌入式“胶水”语言)更加宽广的视野。

比SmallTalk、Lisp和Prolog更不晦涩。Python拥有这类函数式语言的动态品味,但是也拥有开发者和定制系统终端用户都可接受的传统语法。

特别是对不仅仅用于个人扫描文本文件,未来会被人们(包括你在内)读到的程序而言,很多人会发现Python比目前任何可用的脚本或编程语言都划得来。不仅如此,除非你的应用要求最尖端的性能,Python往往是C、C++和Java等系统开发语言的一个不错的替代品:Python代码能够常常实现相同的目标,却会减少很多编写、调试和维护的麻烦。

当然,本文作者从1992年就已经是Python的正式布道者了,所以尽可能接受这些意见吧(其他语言的拥护者的利益可能会受到些损失)。然而,所有这些观点的确代表了投入时间和精力来探索Python的众多开发者的一致看法。

关于作者:Mark Lutz是一位世界级的Python培训讲师。他是Python畅销书籍的作者,同时从1992年起就成为Python社区的引领者,有着30余年的软件开发经验。

本文摘编自《Python学习手册》(原书第5版),经出版方授权发布。

请点击输入图片描述

一样的正则表达式为什么在自己电脑上运行是空的。代码如下

yield 表达式只能用于定义生成器函数中,你的代码报错

SyntaxError: 'yield' outside function

【正则表达式生成器】的内容来源于互联网,如引用不当,请联系我们修改。

声明:本文内容由网友自发贡献,本站不承担相应法律责任。对本内容有异议或投诉,请联系2913721942@qq.com核实处理,我们将尽快回复您,谢谢合作!
若转载请注明出处: 正则表达式生成器(正则表达式生成器 mysql)
本文地址: https://solustack.com/20410.html

相关推荐:

网友留言:

我要评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。