云服务器免费试用

阿里云数据库集群(阿里云端数据库)

服务器知识 0 931

本文目录:

  • 1、阿里云分布式数据库服务DRDS?谁使用过 简单讲讲!
  • 2、hadoop集群搭建在阿里云服务器上 云服务器配置要求是多少
  • 3、RabbitMQ 进阶- 阿里云服务器部署RabbitMQ集群
  • 4、阿里云是什么?
  • 5、阿里云redis集群数据集中在db0未分散到所有节点问题解决
  • 6、对话阿里云李飞飞:关于云原生数据库的五大预判

阿里云分布式数据库服务DRDS?谁使用过 简单讲讲!

淘宝开源的TDDL和cobar的结合,放到了阿里云上就是DRDS,是商品,服务,可以购买使用的。可以在阿里云官网上注册免费试用。

=====================================================

随着互联网时代的到来,计算机要管理的数据量呈指数级别地飞速上涨,而我们却完全无法对用户数做出准确预估。我们的系统所需要支持的用户数,很可能在短短的一个月内突然爆发式地增长几千倍,数据也很可能快速地从原来的几百GB飞速上涨到了几百个TB。如果在这爆发的关键时刻,系统不稳定或无法访问,那么对于业务将会是毁灭性的打击。

伴随着这种对于系统性能、成本以及扩展性的新需要,以HBase、MongoDB为代表的NoSQL数据库和以阿里DRDS、VoltDB、ScaleBase为代表的分布式NewSQL数据库如雨后春笋般不断涌现出来。

本文将会介绍阿里DRDS的技术理念、发展历程、技术特性等内容。

DRDS设计理念

从20世纪70年代关系数据库创立开始,其实大家在数据库上的追求就从未发生过变化:更快的存取数据,可以按需扩缩以承载更大的访问量和更大的数据量,开发容易,硬件成本低,我们可以把这叫做数据库领域的圣杯。

为了支撑更大的访问量和数据量,我们必然需要分布式数据库系统,然而分布式系统又必然会面对强一致性所带来的延迟提高的问题,因为网络通信本身比单机内通信代价高很多,这种通信的代价就会直接增加系统单次提交的延迟。延迟提高会导致数据库锁持有时间变长,使得高冲突条件下分布式事务的性能不升反降(这个具体可以了解一下Amdahl定律),甚至性能距离单机数据库都还有明显的差距。

从上面的说明,我们可以发现,问题的关键并不是分布式事务做不出来,而是做出来了却因为性能太差而没有什么卵用。数据库领域的高手们努力了40年,但至今仍然没有人能够很好地解决这个问题,Google Spanner的开发负责人就经常在他的Blog上谈论延迟的问题,相信也是饱受这个问题的困扰。

面对这个难题,传统的关系数据库选择了放弃分布式的方案,因为在20世纪70~80年代,我们的数据库主要被用来处理企业内的各类数据,面对的用户不过几千人,而数据量最多也就是TB级别。用单台机器来处理事务,用个磁盘阵列处理一下磁盘容量不够的问题,基本上就能解决一切问题了。

然而,信息化和互联网的浪潮改变了这一切,我们突然发现,我们服务的对象发生了根本性变化,从原来的几千人,变成了现在的几亿人,数据量也从TB级别到了PB级别甚至更多。存在单点的单机系统无论如何努力,都会面对系统处理能力的天花板。原来的这条路,看起来是走不下去了,我们必须想办法换一条路来走。

可是,分布式数据库所面对的强一致性难题却像一座高山,人们努力了无数个日日夜夜,但能翻越这座山的日子看来仍然遥遥无期。

于是,有一群人认为,强一致性这件事看来不怎么靠谱,那彻底绕开这个问题是不是个更好的选择?他们发现确实有那么一些场景是不需要强一致事务的,甚至连SQL都可以不要,最典型的就是日志流水的记录与分析这类场景。而去掉了事务和SQL,接口简单了,性能就更容易得到提升,扩展性也更容易实现,这就是NoSQL系统的起源。

虽然NoSQL解决了性能和扩展性问题,但这种绕开问题的方法给用户带来了很多困扰,系统的开发成本也大大提升。这时候就有另外一群人,他们觉得用户需要SQL,觉得用户也需要事务,问题的关键在于我们要努力地往圣杯的方向不断前进。在保持系统的扩展性和性能的前提下,付出尽可能小的代价来满足业务对数据库的需要。这就是NewSQL这个理念的由来。

DRDS也是一个NewSQL的系统,它与ScaleBase、VoltDB等系统类似,都希望能够找到一条既能保持系统的高扩展性和高性能,又能尽可能保持传统数据库的ACID事务和SQL特性的分布式数据库系统。

DRDS发展历程

在一开始,TDDL的主要功能就是做数据库切分,一个或一组SQL请求提交到TDDL,TDDL进行规则运算后得知SQL应该被分发到哪个机器,直接将SQL转发到对应机器即可(如图1)。

图1 TDDL数据库切分

开始的时候,这种简单的路由策略能够满足用户的需要,我们开始的那些应用,就是通过这样非常简单的方式完成了他所有的应用请求。我们也认为,这种方案简单可靠,已经足够好用了。

然而,当我们服务的应用从十几个增长到几百个的时候,大量的中小应用加入,大家纷纷表示,原来的方案限制太大,很多应用其实只是希望做个读写分离,希望能有更好的SQL兼容性。

于是,我们做了第一次重大升级,在这次升级里,我们提出了一个重要的概念就是三层架构,Matrix对应数据库切分场景,对SQL有一定限制,Group对应读写分离和高可用场景,对SQL几乎没有限制。如图2所示。

图2 数据库升级为三层架构

这种做法立刻得到了大家的认可,TDDL所提供的读写分离、分库分表等核心功能,也成为了阿里集团内数据库领域的标配组件,在阿里的几乎所有应用上都有应用。最为难得的是,这些功能从上线后,到现在已经经历了多年双11的严酷考验,从未出现过严重故障(p0、p1级别故障属于严重故障)。数据库体系作为整个应用系统的重中之重,能做到这件事,真是非常不容易。

随着核心功能的稳定,自2010年开始,我们集中全部精力开始关注TDDL后端运维系统的完善与改进性工作。在DBA团队的给力配合下,围绕着TDDL,我们成功做到了在线数据动态扩缩、异步索引等关键特征,同时也比较成功地构建了一整套分布式数据库服务管控体系,用户基本上可以完全自助地完成整套数据库环境的搭建与初始化工作。

大概是2012年,我们在阿里云团队的支持下,开始尝试将TDDL这套体系输出到阿里云上,也有了个新的名字:阿里分布式数据库服务(DRDS),希望能够用我们的技术服务好更多的人。

不过当我们满怀自信地把自己的软件拿到云上的时候,却发现我们的软件距离用户的要求差距很大。在内部因为有DBA的同学们帮助进行SQL review,所以SQL的复杂度都是可控的。然而到了云上,看了各种渠道提过来的兼容性需求,我们经常是不自觉地发出这样的感叹:“啊?原来这种语法MySQL也是可以支持的?”

于是,我们又进行了架构升级,这次是以兼容性为核心目标的系统升级工作,希望能够在分布式场景下支持各类复杂的SQL,同时也将阿里这么多年来在分布式事务上的积累都带到了DRDS里面。

这次架构升级,我们的投入史无前例,用了三年多才将整个系统落地完成。我们先在内部以我们自己的业务作为首批用户上线,经过了内部几百个应用的严酷考验以后,我们才敢拿到云上,给到我们的最终用户使用。

目前,我们正在将TDDL中更多的积累输出到云上,同时也努力优化我们的用户界面。PS:其实用户界面优化对我们这种专注于高性能后端技术的团队来说,才是最大的技术挑战,连我也去学了AngularJS,参与了用户UI编。

DRDS主要功能介绍

发展历史看完了,下面就由我来介绍一下目前我们已经输出到云上的主要功能。

【分布式SQL执行引擎】

分布式SQL引擎主要的目的,就是实现与单机数据库SQL引擎的完全兼容。目前我们的SQL引擎能够做到与MySQL的SQL引擎全兼容,包括各类join和各类复杂函数等。他主要包含SQL解析、优化、执行和合并四个流程,如图3中绿色部分。

图3 SQL引擎实现的主要流程

虽然SQL是兼容的,但是分布式SQL执行算法与单机SQL的执行算法却完全不同,原因也很简单,网络通信的延迟比单机内通信的延迟大得多。举个例子说明一下,我们有份文件要从一张纸A上誊写到另外一张纸B上,单机系统就好比两张纸都在同一个办公室里,而分布式数据库则就像是一张纸在北京,一张纸在杭州。

自然地,如果两张纸在同一个办公室,因为传输距离近,逐行誊写的效率是可以接受的。而如果距离是北京到杭州,用逐行誊写的方式,就立刻显得代价太高了,我们总不能看一行,就打个“飞的”去杭州写下来吧。在这种情况下,还是把纸A上的信息拍个照片,【一整批的】带到杭州去处理,明显更简单一些。这就是分布式数据库特别强调吞吐调优的原因,只要是涉及到跨机的所有查询,都必须尽可能的积攒一批后一起发送,以减少系统延迟提高带来的不良影响。

【按需数据库集群平滑扩缩】

DRDS允许应用按需将新的单机存储加入或移出集群,DRDS则能够保证应用在迁移流程中实现不停机扩容缩容。

图4 DRDS按需进行平滑扩缩

在内部的数据库使用实践中,这个功能的一个最重要应用场景就是双11了。在双11之前,我们会将大批的机器加入到我们的数据库集群中,抗过了双11,这批机器就会下线。

当DRDS来到云上,我们发现双11其实不仅仅只影响阿里内部的系统。在下游的各类电商辅助性系统其实也面对巨大压力。在双11前5天,网聚宝的熊总就找到我说,担心撑不过双11的流量,怕系统挂。于是我们就给他介绍了这个自动扩容的功能怎么用,他买了一个月的数据库,挂接在DRDS上。数据库能力立刻翻倍,轻松抗过了双11,也算是我印象比较深刻的一个案例了。

因为我们完全无法预测在什么时间点系统会有爆发性的增长,而如果在这时候系统因为技术原因不能使用,就会给整个业务带来毁灭性的影响,风口一旦错过,就追悔莫及了。我想这就是云计算特别强调可扩展能力的原因吧。

【小表广播】

小表广播也是我们在分布式数据库领域内最常用的工具之一,他的核心目的其实都是一个——尽可能让查询只发生在单机。

让我们用一个例子来说明,小表广播的一般使用场景。

图5 小表广播场景

图5中,如果我想知道买家id等于0的用户在商城里面买了哪些商品,我们一般会先将这两个表join起来,然后再用where平台名=”商城” and buyerID = 0找到符合要求的数据。然而这种join的方式,会导致大量的针对左表的网络I/O。如果要取出的数据量比较大,系统延迟会明显上升。

这时候,为了提升性能,我们就必须要减少跨机join的网络代价。我们比较推荐应用做如下处理,将左表复制到右表的每一个库上。这样,join操作就由分布式join一下变回到本地join,系统的性能就有很大的提升了,如图6所示。

图6

【分布式事务套件】

在阿里巴巴的业务体系中存在非常多需要事务类的场景,下单减库存,账务,都是事务场景最集中的部分。

而我们处理事务的方法却和传统应用处理事务的方案不大一样,我们非常强调事务的最终一致性和异步化。利用这种方式,能够极大地降低分布式系统中锁持有的时间,从而极大地提升系统性能。

图7 DRDS分布式事务解决套件

这种处理机制,是我们分布式事务能够以极低成本大量运行的最核心法门。在DRDS平台内,我们将这些方案产品化,为了DRDS的分布式事务解决套件。

利用他们,能够让你以比较低的成本,实现低延迟,高吞吐的分布式事务场景。

DRDS的未来

阿里分布式数据库服务DRDS上线至今,大家对这款产品的热情超出了我们的预期,短短半年内已经有几千个申请。

尽管还在公测期,但是大家就已经把关系到身家性命的宝贵在线数据业务放到了DRDS上,我能够感受到这份沉甸甸的信赖,也不想辜负这份信赖。

经过阿里内部几千个应用的不断历练,DRDS已经积累出一套强大的分布式SQL执行引擎和和一整套分布式事务套件。

我也相信,这些积累能够让用户在基本保持单机数据库的使用习惯的前提下,享受到分布式数据库高性能可扩展的好处。

在平时的DRDS支持过程中,我面对最多的问题就是,DRDS能不能够在不改变任何原有业务逻辑和代码的前提下,实现可自由伸缩和扩展呢?十分可惜的是,关系数据库发展至今,还没有找到既能保留传统数据库一切特性,又能实现高性能可扩展数据库的方法。

然而,虽不能至,吾心向往之!我们会以“可扩展,高性能”为产品核心,坚定地走在追寻圣杯的路上,并坚信最终我们一定能够找寻到它神圣的所在。

作者简介:王晶昱,花名沈询,阿里巴巴资深技术专家。目前主要负责阿里的分布式数据库DRDS(TDDL)和阿里的分布式消息服务ONS(RocketMQ/Notify)两个系统。

hadoop集群搭建在阿里云服务器上 云服务器配置要求是多少

如果是集群的话,我考虑需要流畅运行的话,2核4G配置是可以满足的。因为这个集群形式,用于适用于物联网、车联网、监控、安全风控、即时通讯、消息存储等行业场景,所以数据量是比较大的,所以配置太低了跑不动,会卡死的。

因为hadoop是海量数据的处理能力,所以服务器一定不能太小配置了,跑不动了就没实际用途了。最好使用4核8G内存及以上配置。

因为这方面内容较多,这里也写不开那么多内容,所以你可以留言或到我的博客上搜索相关内容,老魏有写过教程,还不止一篇,都挺详细的内容,可以帮助你入门。

RabbitMQ 进阶- 阿里云服务器部署RabbitMQ集群

如果RabbitMQ集群只有一个broker节点,那么该节点的失效将导致整个服务临时性的不可用,并且可能会导致message的丢失(尤其是在非持久化message存储于非持久化queue中的时候)。可以将所有message都设置为持久化,并且使用持久化的queue,但是这样仍然无法避免由于缓存导致的问题:因为message在发送之后和被写入磁盘并执行fsync之间存在一个虽然短暂但是会产生问题的时间窗。通过publisher的confirm机制能够确保客户端知道哪些message已经存入磁盘,尽管如此,一般不希望遇到因单点故障导致服务不可用。

如果RabbitMQ集群是由多个broker节点构成的,那么从服务的整体可用性上来讲,该集群对于单点失效是有弹性的,但是同时也需要注意:尽管exchange和binding能够在单点失效问题上幸免于难,但是queue和其上持有的message却不行,这是因为queue及其内容仅仅存储于单个节点之上,所以一个节点的失效表现为其对应的queue不可用。

为了提高程序的吞吐量,保持消息的可靠性,一台机器挂了后,RabbitMQ能够正常生产,消费消息。

rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式

Demo级别的,一般只是本机测试玩玩而已,生产环境下不会用的。

在多台机器上启动多个rabbitmq实例,每个机器启动一个。

但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据(存放含queue数据的真正实例位置)。消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。

示意图

这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。

普通集群的方式,确实达到了消息的高可用,但没办法保证可靠性,没做到分布式,简而言之,只是一个普通的集群。

这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。

上图中每个节点有一个queue,生产者生产完毕数据后投递到指定交换机的队列,交换机的队列进行消息同步。

每个节点queue都有一个完整的rabbitmq节点,所以这种方式叫做镜像集群

好处: 任何一个节点宕机后,其它节点不受影响,正常使用

坏处:

确保机器中安装了Docker,若未安装,可看:【云原生】Docker入门 – 阿里云服务器Linux环境下安装Docker

查看拉取的镜像

成功运行

设置节点1

浏览器输入 您的ip地址:15673

再次测试即可成功~

File — New — Project — Maven — 直接Next 进入下一步创建普通的Maven工程即可

创建一个默认的Maven聚合工程,将src文件夹删除,该工程就是一个Maven聚合工程

引入依赖如下:

在项目内,新建一个Moudle,rabbitmq-order-producer 默认Maven工程,下一步即可

在项目内,新建一个Moudle,rabbitmq-order-cousumer 默认Maven工程,下一步即可

Maven聚合工程创建完成图

Maven依赖图

自行手写MainApplication即可

创建完成!

编写完成!

启动消费者

交换机

=

15674

15675

成功消费数据!

已成功同步消息~

阿里云是什么?

阿里云是什么

阿里云可以把网站放在上面供别人访问,很好用的,我就在用

云计算(Cloud puting)是一种能够通过网络随时随地获取高可用计算资源的计算模式。云计算的服务商通过对软硬件资源的虚拟化,将基础资源变成了可以自由调度的“池子”,从而实现资源的按需配给,并做到向客户提供按使用付费的服务;客户可以根据业务的需要动态调整所需的资源,而云服务商也可以提高自己的资源使用效率,降低服务成本,通过多种不同类型的服务方式为用户提供计算、存储和数据业务的支持。

阿里云致力于打造公共、开放的云计算平台。我们将借助技术的创新,不断提升计算能力与规模效益,将云计算变成真正意义上的公共服务。与此同时,我们将通过aliyun用互联网的方式使得大家可以便捷的按需获取阿里云计算产品与服务。

阿里云到底是什么啊?

阿里巴巴做的云计算产品,什么叫云计算你可以百度一下,国内类似的云主机产品还有腾讯云,盛大云,太平洋臻云,西部云,美橙云等等。

云主机是基于云计算平台的一种虚拟的主机服务器产品,特点是资源分配配置灵活,安全性能强。与之前的VPS和独立服务器产品相比有一定的优势。

你也可以把云主机理解为一台基于云平台的服务器或主机,通过远程连接登陆后,你会发现他就是一台服务器电脑,你在本地电脑上能做的事情,在这台云主机服务器上,你都可以做到。

如果你要使用JSP项目,那么你要自己在云主机服务器上安装相应的应用脚本和数据库等搭建你自己需要的环境。如果不会可在网上查找JSP环境搭建教程

阿里云是什么?简单点说..

阿里云,阿里巴巴集团旗下云计算品牌,全球卓越的云计算技术和服务提供商。

简单来说,就是一个数据处理中心。比如:A公司搭建了一个网站,自己没有服务器储存这些数据,就把数据储存到阿里云平台,等用到的时候就调用。

阿里云是什么东西

2009年9月,阿里巴巴集团在十周年庆典上宣布成立子公司“阿里云”,该公司将专注于云计算领域的研究和研发。“阿里云”也成为继阿里巴巴、淘宝、支付宝、阿里软件、中国雅虎之后的阿里巴巴集团第八家子公司。由阿里巴巴集团投资创办,在杭州、北京和硅谷等地设有研发中心和运营机构。阿里云的目标是要打造互联网数据分享的第一平台,成为以数据为中心的先进的云计算服务公司。2013年底阿里云正筹划进军海外云服务市场。根据计划,阿里云将在海外设立云数据中心,向部署海外业务的中国企业以及海外本土企业输出云计算服务能力。[1]

-------------------------------------------------------------------

亲~你好! 很高兴回答你的问题, 如有不懂可继续追问

如果您满意,请点击下面的【采纳为满意回答】

手机提问的朋友可以在右上角点击【评价】

谢谢!

-----------------------------------------------------------------

阿里云是什么?_?

阿里巴巴集团旗下云计算品牌,用户通过aliyun,用互联网的方式即可远程获取海量计算、存储资源和大数据处理能力。如面向银行、保险公司、券商的金融云, *** 机构、央企、大型民营企业纷纷开始拥抱云计算和大数据。2014年12月,12306网站75%的余票查询系统迁移至阿里云计算平台,以分担春运流量洪峰带来的压力。

阿里云计算的原理是什么?

看这个吧

aliyun/zixun/content/1_1_15198

阿里云服务器用的什么cpu

一般是Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz 看型号,有个别是2.0GHz

什么叫阿里云系统

你好朋友;

;阿里云os目录

简介;

相关功能;

阿里云智能手机;阿里云手机;

天语大黄蜂;

展开;简介;

相关功能;

阿里云智能手机;阿里云手机;

天语大黄蜂;

展开;;简介

阿里云OS是融云数据存储;云计算服务和云操作系统为一体的新一代操作系统;系统搭载了阿里云公司自主设计;架构;研发的系统核心虚拟机;增强了云端服务的能力;并提供与Dalvik虚拟机兼容的运行环境;通过海量云空间来同步和管理手机数据;数据可永久保存在云端并联通所有设备;基于云端弹性云计算的托管服务;便于开发者快速开发和部署移动应用;通过云应用平台;成千上万的互联网产品和服务可轻松转化为手机云应用;无需下载;更新和安装即可使用;真正将互联网搬入手机;[1];7月25日消息;阿里巴巴将于本周正式发布云智能手机操作系统;命名为阿里云OS;据腾讯科技获悉;包括聚划算;淘宝比价等多个阿里集团内部开发成型的手机应用;已入驻该系统平台中;这款即将发布的手机操作系统与其它手机操作系统不同的是;阿里云OS采用Cloud;App方式;使用户不需要在手机端下载应用;而只在网络环境下;登陆统一的云账号后;只要手机流量足够;即可运行OS平台上的各种应用;

;相关功能

据体验者称;阿里云OS的开机画面将呈现一个用户注册云账号的提醒界面;该账号为一个统一的登录系统;起到PC端及各种移动终端的数据同步作用;值得注意的是;用户要使用平台上的应用必须登陆云账号;;在应用方面;阿里云OS不梗集成了阿里云自主研发的通讯录;短信;日历农历;输入法;搜索;邮件等基础应用;也携带有阿里巴巴集团自有开发的消费级应用;如淘宝聚划算;淘宝比价;淘女郎等;此外;Android;Market的手机应用也能在该平台中使用;未来;阿里云OS还会对第三方开发者提供应用接口;;1:创新的Cloud;APP概念;无需安装的云端应用程序;;2:国内首款云概念手机;丰富云应用;;3:阿里巴巴服务一站式体验;;4:兼容Android应用;;阿里云OS基本功能符合中国人使用习惯;让你使用起来更加得心应手;

;阿里云智能手机

阿里云OS的云智能手机计划与天语合作运营;并得到了阿里巴巴集团其它子公司如淘宝等多项运营资源支持;随着阿里云OS发布期的临近;阿里云与天语的定制手机也将面向市场;随着型号为W700;W800的阿里云手机上市;随心换壳;云端存储数据不怕丢失;2012年4月阿里云第二款智能手机大黄蜂W806和小黄蜂W619上市;大黄蜂凭借著高端配置低端价格赢得市场;;资料显示;采用云OS的智能手机能直接享用100GB云空间和阿里云提供的各种云服务(如地图;电子邮件等);还能使目前互联网上的海量Web服务通过阿里云的云计算数据中心方便接入手机终端;保持与本地应用一样的流畅用户体验;把智能手机直接推动至“云应用”时代;

阿里云手机

阿里巴巴集团旗下阿里云计算有限公司28日宣布;正式推出独立研发的阿里云操作系统(阿里云OS)以及搭载此系统的天语云智能手机W700;;如果说第一代阿里云手机推出的时机还不够成熟;那么今天这款搭载阿里云OS;2012系统的天语W800在成熟度上又提升了一个台阶;

天语大黄蜂

天语W806外号大黄蜂;采用阿里云OS;2012系统;配有1GHz双核Tegra2处理器;4.3吋WVGA触控屏幕和Soft-Touch背壳设计;直接吸引著用户的眼球;;关注过MWC2012大展的朋友也许应该都能意识到;2012年将会是国产手机厂商的春天;在高端市场;像天语;华......

阿里云与新浪云有什么区别

Sina App Engine(简称SAE)是新浪研发中心推出的国内首个公有云计算平台,支持PHP,MySQL,Memcached,Mail,TaskQueue,RDC(关系型数据库集群)等服务,并为开发者提供了非常便捷的管理界面。

通过新浪移动云,不但可以开发适用于移动浏览器的WebApp,还可以开发和NativeApp一样可以安装和发布到市场,并通过JS调用设备硬件能力的HybridApp。

云的功能相近,但阿里云的系统有windows2008,centos,redhat,ubuntu,debian,只提供MYSQL数据库;租用价格较贵。

阿里云是干什么的

阿里云 2009年9月,阿里巴巴集团在十周年庆典上宣布成立子公司“阿里云”,该公司将专注于云计算领域的研究和研发。“阿里云”也成为继阿里巴巴、淘宝、支付宝、阿里软件、中国雅虎之后的阿里巴巴集团第八家子公司。

[编辑本段]阿里云-命名

2009年9月10日,在阿里巴巴十周年庆典晚会上,阿里巴巴云计算团队以独立身份出现,命名为“阿里云”的子公司正式成立。新公司成立后,阿里巴巴集团旗下的八家公司变为阿里巴巴、淘宝、支付宝、、阿里软件、阿里妈妈、口碑网、阿里云和中国雅虎。

新成立的阿里云由原阿里软件、阿里巴巴集团研发院以及B2B与淘宝的底层技术团队组成,由阿里巴巴集团首席架构师、阿里集团研发院院长王坚负责。

[编辑本段]阿里云-背景

在此之前,阿里软件以“钱掌柜”为代表的小企业软件业务和资产已经划归B2B上市公司,以淘宝旺旺为代表的个人软件划归了淘宝,阿里软件已没有多少实际业务。

早在2009年4月,阿里巴巴就已涉足云计算,由阿里软件在南京建立首个“电子商务云计算中心”,首期投资规模在1亿元人民币。该中心可辐射范围包括南京、扬州、南通、泰州、芜湖和马鞍山等长三角地区城市。

[编辑本段]阿里云-发展方向

据相关负责人介绍,未来“阿里云”主要从事基础技术的研发,不涉及具体软件产品。以阿里巴巴新推出的输入法为例,阿里云只负责技术研发,B2B在此技术的基础上推出阿里巴巴输入法,淘宝则相应推出淘宝输入法,不同输入法的字库也会有所不同。

前阿里巴巴集团资深副总裁、阿里软件总经理王涛曾表示,阿里云计算可以将阿里系各个平台上的商品信息、信誉体系、支付工具、IM用户资源挖掘提炼,有巨大的商业价值。王涛称,阿里软件会筹建多个类似的“电子商务云计算中心”。他认为,5年后中国在线软件服务市场规模将超过传统软件市场,SaaS服务模式更适合国内中小企业使用。

据悉,当前云计鼎是非常热门的一个话题,国际IT巨头IBM、谷歌等均纷纷对云计算情有独钟。一些分析机构预测,云计算将成为IT领域未来发展的主要趋势。

阿里云redis集群数据集中在db0未分散到所有节点问题解决

背景介绍:我们系统使用的缓存服务是付费版的阿里云的redis集群服务,配置是4核,16G。redis的集群结构如下:分为四个节点DB0,DB1,DB2,DB3

之前的存储方案是存储的商品促销数据,结构是:

KEY FIELD VALUE来存储。其中KEY是一个固定的字符串"zy:prom:wx",FIELD则是商品sku,VALUE是商品促销的具体信息。这种方式导致我们存入缓存服务器的数据一直集中在DB0节点上,在访问量过大时,该节点会在短时间内受到到的访问压力很大,DB0的cpu瞬间达到100%以上,造成服务卡顿甚至不可用。而相比之下DB1,DB2,DB3的节点cpu压力却很小,可以忽略不计。这是为什么?最后询问了阿里的技术,他们说我们的数据存储的方法有误,具体是我们的key设置有误。与阿里的技术对话如下:

所以我们后来改造了方案把key的组成变程了"prom:wx:sku",这样key就会根据sku的不同而不同,增大了key的离散度,这样key通过hash算出来的值,就会不同,使得所有的数据不再存放到同一台节点上,完美解决问题。

修改后的存储分布情况如下图:DB0、DB1、DB2、DB3四个节点数据均匀分布。

对修改前后两天同一时间区间的缓存服务器的cpu压力情况对比:

对话阿里云李飞飞:关于云原生数据库的五大预判

作者:王慧贤

数据存储、数据分析、数据安全......如今,围绕“数据”的话题越来越多,离人们的生活也越来越近。

从陌生到熟悉,数据不仅“出圈”,甚至已然站在了C位。去年,中央发布的《关于构建更加完善的要素市场化配置体制机制的意见》中明确表示,继土地、劳动力、资本、技术后,数据成为第五大生产要素。

步入信息化时代后,数据库、操作系统与中间件作为计算机最基础的三大软件,支撑着企业的正常运行。

当数据成为生产要素后,必然会迎来爆发式增长,企业的数据存储和处理需求将进一步释放。更重要的是,疫情加快了数字化转型的脚步,更加速了企业的上云速度。

从信息化到数字化,时代的变革,总会带来商业世界的变化。如何在云原生架构下使用数据库,成为企业的痛点和云厂商的机会,亚马逊AWS的CTO Werner Vogels曾多次强调:“数据库是云计算的终极之战。”

在数智化时代,云原生到底意味着什么?云原生数据库和传统数据库相比,核心优势是什么?是否把数据库搬上云就是云原生?基于这些问题,雷锋网与阿里巴巴集团副总裁、阿里云数据库产品事业部负责人李飞飞展开一场对话。

国产云原生数据库,摆脱「切肤之痛」

如今,数据库的商业世界,因为云的出现与发展,分成了两大派系。

一派是以Oracle为代表的传统商用数据库,一派是以国外AWS、国内阿里云为代表的云原生数据库,去“IOE革命”下的产物。

其实,早期较为火热的数据库种类有三种,层次式数据库、网络式数据库和关系型数据库。

在《浪潮之巅》一书中,作者吴军写下了这样的观点:“Oracle 的兴起很大程度上靠的是它最早看到关系型数据库的市场前景,并且在商业模式上优于 IBM。”

因此,在云原生数据库“入世”之前,数据库的天下一直是Oracle的,国内大部分互联网公司都不得不采用Oracle+IBM小型机+EMC的模式来维持正常运营。

高昂的费用,使得对于数据库需求较大的互联网巨头“忍无可忍”。

2009年,阿里巴巴的Oracle RAC 集群节点数达到了创记录的20个。可由于Oracle并没有弹性扩展的功能,只能按照峰值流量购买小型机和数据库,导致阿里将业务上涨带来的大部分利润,都支付给了Oracle。

第二年,阿里便开始走上了去“IOE”之路,根据开源MySQL搭建了AliSQL,并顺利经过了淘宝双11的考验,国产云原生数据库算是正式摆脱了“切肤之痛”,逐渐受到市场的真正认可。

另一边,国外的AWS在2015年公布了基于云计算的自研数据库Amazon Aurora。Aurora是一个关系型数据库,可以跨3个可用区域复制6份数据,其最大的特性就是高性能和高可用性。

云计算巨头的入局,让云原生数据库在国内外一步步成为主流。据Gartner预测,到了2021年,云数据库在整个数据库市场中的占比将首次达到50%,到2023年,75%的数据库都要跑在云平台之上。

关于云原生数据库,随着逐步的出圈,也让人们关心的焦点从“是啥?”转变为“还能解决哪些问题?”

但云原生数据库存在着数据孤岛的问题,无法打通多个数据系统的情况下,企业在数据加工和数据管理上就会“压力较大”,甚至在数据安全方面还存在隐患。

传统数据仓库一般基于T+1数据集成构建离线数仓,以支撑企业各项分析与服务。传统方案不但会影响线上业务稳定性,且难以支持企业的实时需求。

因此,在李飞飞看来,云原生数据库已经走到2.0阶段。这个阶段要解决的问题,就是上述存在的痛点。

9月26日,在阿里云数据库创新上云峰会上,阿里云发布了首个一站式敏捷数据仓库解决方案。该方案结合一站式数据管理平台DMS及云原生数据仓库AnalyticDB(简称:ADB),实现了库仓一体的技术架构,提供在线数据实时入仓、T+1周期性快照、按需建仓等能力,数据延时低至秒级,持续赋能业务在线化,使企业的在线数据可以释放出更大的价值。

相较于传统方案,阿里云一站式敏捷数据仓库解决方案有4大核心优势:

1、对业务侧影响小,不会因为数据汇聚集中和实时加工影响业务侧正常运行,CPU、内存占用低于5%;

2、事务顺序和数据准确性有保障,且处理链路短,支持在线数据实时处理落仓,效率更高。数据传输效率100m/s,数据延时在10秒内;

3、支持复杂实时数据加工、计算逻辑;

4、低代码操作,能够大大降低实时数仓的构建难度,提升构建效率的同时,支撑企业数字化转型过程中的各类实时场景。

除了实时统计分析场景外,企业为满足周期性数据分析需求,需建设周期性全量快照。

传统数仓的周期性全量集成方案会对生产业务造成稳定性影响、全量集成时效性差、且无法满足客户针对任意时间点进行数据回溯的业务诉求。

针对T+1周期性集成场景,一站式敏捷数据仓库解决方案支持基于拉链表的T+1全量数据快照,用户通过简单几个步骤,即可按需生成各种周期的全量或增量快照。

此外,业务还可按需进行任意时间点的数据回溯,以快速解决数据异常问题。

谈起未来数据库的发展趋势,李飞飞提到以下五点:

1、云原生+分布式一定是数据库的标配,分布式已经是必选项。分布式数据库由多个相互连接的数据库组合而成,面向用户则是以单个数据库的形态出现。云原生分布式数据库具备易用性、高扩展性、快速迭代、节约成本等特征,从资源池化到弹性扩展,再到智能运维,再到离在线一体化,解决企业用户的核心诉求。

2、AI for DB(database,指数据库)和 DB for AI 将是主流趋势。用AI将数据库运维管控智能化,尤其在云原生+分布式这个前提下更重要,因为数据库不仅是内核的能力弹性高可用、可拓展性,更重要的是部署后应用和运维的复杂度要大大降低。在数据库里,面对越来越多非结构化的数据,分析能力十分重要。

3、数据的安全可信,在今天这个大环境下变得愈发重要,如何确保整个数据库系统,在处理数据全链路过程中提供加密能力、多方安全计算能力、隐私保护的能力,也是很重要的趋势。

4、多模数据处理能力将越来越重要。比如,新型数据库多模态的处理能力,在新能源 汽车 企业打标签、智能电池化预测等应用场景中,将发挥越来越重要的作用。

5、一份数据,多个数据处理引擎:实现仓库一体、仓库联动、仓库打通,数据之间无缝流转。

以上判断,也从侧面反映出阿里云数据库的走向,这点毋庸置疑。但除此之外,业界最关心的,还有开源。

近半年,国内很多厂商相继提出开源战略,背后缘由显而易见,为了打造生态。就在今年的阿里云峰会上,阿里云智能总裁、达摩院院长张建锋(花名行癫)将2021年阿里云的发展关键词归纳为:做好服务、做深基础、做厚中台、做强生态。

做好服务与生态,成为如今厂商们不约而同的目标,而开源,就是最好的选择。

当雷锋网问到:“未来,阿里云数据库会不会把所有能力都开源?”这一问题时,李飞飞给到的回答是:“不会。”

之所以有这样的回答,是因为对于开源,他有着一些判断和看法。

李飞飞表示,这些部分,本就是阿里云数据库的商业化版本。

事实上,业界大多数的数据库厂商都不会针对自身的核心能力开源,如TiDB的核心管控组件、TiFlash。

与像MongoDB,、Cassandra、CouchDB这些以开源起家的数据库厂商不同,开源只是阿里云数据库的战略,不是阿里云数据库的命脉。

前几年,有业内人士表示,在面向开源时,国产数据库首先需要解决信任以及开源知识产权等问题。“开源会让厂商更加认真思考版权还有专利的问题,事实上,选择开源后,对于数据库厂商提出了更高的要求。”

李飞飞认为,开源只是一种选择,数据库开源成功并不代表着商业化就能够成功,不开源也不能代表厂商不先进。

更准确的说,开源只是一种有效手段。

最终,阿里云数据库希望客户能够通过开源版本把阿里云数据库产品技术快速用起来,并能够参与到技术产品的迭代过程中,在一些高阶能力上,借鉴团队专业能力和阿里云的服务能力,成为良好的商业合作伙伴,这是李飞飞以及阿里云数据库对于开源的一些基本思考。雷锋网雷锋网雷锋网

【阿里云数据库集群】的内容来源于互联网,如引用不当,请联系我们修改。

声明:本文内容由网友自发贡献,本站不承担相应法律责任。对本内容有异议或投诉,请联系2913721942@qq.com核实处理,我们将尽快回复您,谢谢合作!
若转载请注明出处: 阿里云数据库集群(阿里云端数据库)
本文地址: https://solustack.com/14560.html

相关推荐:

网友留言:

我要评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。