本文目录:
- 1、对话阿里云李飞飞:关于云原生数据库的五大预判
- 2、阿里云的主要功能是什么?
- 3、再不懂时序就OUT啦!阿里云数据库InfluxDB正式商业化
- 4、阿里云 RDS 怎么保证高可用性
对话阿里云李飞飞:关于云原生数据库的五大预判
作者:王慧贤
数据存储、数据分析、数据安全......如今,围绕“数据”的话题越来越多,离人们的生活也越来越近。
从陌生到熟悉,数据不仅“出圈”,甚至已然站在了C位。去年,中央发布的《关于构建更加完善的要素市场化配置体制机制的意见》中明确表示,继土地、劳动力、资本、技术后,数据成为第五大生产要素。
步入信息化时代后,数据库、操作系统与中间件作为计算机最基础的三大软件,支撑着企业的正常运行。
当数据成为生产要素后,必然会迎来爆发式增长,企业的数据存储和处理需求将进一步释放。更重要的是,疫情加快了数字化转型的脚步,更加速了企业的上云速度。
从信息化到数字化,时代的变革,总会带来商业世界的变化。如何在云原生架构下使用数据库,成为企业的痛点和云厂商的机会,亚马逊AWS的CTO Werner Vogels曾多次强调:“数据库是云计算的终极之战。”
在数智化时代,云原生到底意味着什么?云原生数据库和传统数据库相比,核心优势是什么?是否把数据库搬上云就是云原生?基于这些问题,雷锋网与阿里巴巴集团副总裁、阿里云数据库产品事业部负责人李飞飞展开一场对话。
国产云原生数据库,摆脱「切肤之痛」
如今,数据库的商业世界,因为云的出现与发展,分成了两大派系。
一派是以Oracle为代表的传统商用数据库,一派是以国外AWS、国内阿里云为代表的云原生数据库,去“IOE革命”下的产物。
其实,早期较为火热的数据库种类有三种,层次式数据库、网络式数据库和关系型数据库。
在《浪潮之巅》一书中,作者吴军写下了这样的观点:“Oracle 的兴起很大程度上靠的是它最早看到关系型数据库的市场前景,并且在商业模式上优于 IBM。”
因此,在云原生数据库“入世”之前,数据库的天下一直是Oracle的,国内大部分互联网公司都不得不采用Oracle+IBM小型机+EMC的模式来维持正常运营。
高昂的费用,使得对于数据库需求较大的互联网巨头“忍无可忍”。
2009年,阿里巴巴的Oracle RAC 集群节点数达到了创记录的20个。可由于Oracle并没有弹性扩展的功能,只能按照峰值流量购买小型机和数据库,导致阿里将业务上涨带来的大部分利润,都支付给了Oracle。
第二年,阿里便开始走上了去“IOE”之路,根据开源MySQL搭建了AliSQL,并顺利经过了淘宝双11的考验,国产云原生数据库算是正式摆脱了“切肤之痛”,逐渐受到市场的真正认可。
另一边,国外的AWS在2015年公布了基于云计算的自研数据库Amazon Aurora。Aurora是一个关系型数据库,可以跨3个可用区域复制6份数据,其最大的特性就是高性能和高可用性。
云计算巨头的入局,让云原生数据库在国内外一步步成为主流。据Gartner预测,到了2021年,云数据库在整个数据库市场中的占比将首次达到50%,到2023年,75%的数据库都要跑在云平台之上。
关于云原生数据库,随着逐步的出圈,也让人们关心的焦点从“是啥?”转变为“还能解决哪些问题?”
但云原生数据库存在着数据孤岛的问题,无法打通多个数据系统的情况下,企业在数据加工和数据管理上就会“压力较大”,甚至在数据安全方面还存在隐患。
传统数据仓库一般基于T+1数据集成构建离线数仓,以支撑企业各项分析与服务。传统方案不但会影响线上业务稳定性,且难以支持企业的实时需求。
因此,在李飞飞看来,云原生数据库已经走到2.0阶段。这个阶段要解决的问题,就是上述存在的痛点。
9月26日,在阿里云数据库创新上云峰会上,阿里云发布了首个一站式敏捷数据仓库解决方案。该方案结合一站式数据管理平台DMS及云原生数据仓库AnalyticDB(简称:ADB),实现了库仓一体的技术架构,提供在线数据实时入仓、T+1周期性快照、按需建仓等能力,数据延时低至秒级,持续赋能业务在线化,使企业的在线数据可以释放出更大的价值。
相较于传统方案,阿里云一站式敏捷数据仓库解决方案有4大核心优势:
1、对业务侧影响小,不会因为数据汇聚集中和实时加工影响业务侧正常运行,CPU、内存占用低于5%;
2、事务顺序和数据准确性有保障,且处理链路短,支持在线数据实时处理落仓,效率更高。数据传输效率100m/s,数据延时在10秒内;
3、支持复杂实时数据加工、计算逻辑;
4、低代码操作,能够大大降低实时数仓的构建难度,提升构建效率的同时,支撑企业数字化转型过程中的各类实时场景。
除了实时统计分析场景外,企业为满足周期性数据分析需求,需建设周期性全量快照。
传统数仓的周期性全量集成方案会对生产业务造成稳定性影响、全量集成时效性差、且无法满足客户针对任意时间点进行数据回溯的业务诉求。
针对T+1周期性集成场景,一站式敏捷数据仓库解决方案支持基于拉链表的T+1全量数据快照,用户通过简单几个步骤,即可按需生成各种周期的全量或增量快照。
此外,业务还可按需进行任意时间点的数据回溯,以快速解决数据异常问题。
谈起未来数据库的发展趋势,李飞飞提到以下五点:
1、云原生+分布式一定是数据库的标配,分布式已经是必选项。分布式数据库由多个相互连接的数据库组合而成,面向用户则是以单个数据库的形态出现。云原生分布式数据库具备易用性、高扩展性、快速迭代、节约成本等特征,从资源池化到弹性扩展,再到智能运维,再到离在线一体化,解决企业用户的核心诉求。
2、AI for DB(database,指数据库)和 DB for AI 将是主流趋势。用AI将数据库运维管控智能化,尤其在云原生+分布式这个前提下更重要,因为数据库不仅是内核的能力弹性高可用、可拓展性,更重要的是部署后应用和运维的复杂度要大大降低。在数据库里,面对越来越多非结构化的数据,分析能力十分重要。
3、数据的安全可信,在今天这个大环境下变得愈发重要,如何确保整个数据库系统,在处理数据全链路过程中提供加密能力、多方安全计算能力、隐私保护的能力,也是很重要的趋势。
4、多模数据处理能力将越来越重要。比如,新型数据库多模态的处理能力,在新能源 汽车 企业打标签、智能电池化预测等应用场景中,将发挥越来越重要的作用。
5、一份数据,多个数据处理引擎:实现仓库一体、仓库联动、仓库打通,数据之间无缝流转。
以上判断,也从侧面反映出阿里云数据库的走向,这点毋庸置疑。但除此之外,业界最关心的,还有开源。
近半年,国内很多厂商相继提出开源战略,背后缘由显而易见,为了打造生态。就在今年的阿里云峰会上,阿里云智能总裁、达摩院院长张建锋(花名行癫)将2021年阿里云的发展关键词归纳为:做好服务、做深基础、做厚中台、做强生态。
做好服务与生态,成为如今厂商们不约而同的目标,而开源,就是最好的选择。
当雷锋网问到:“未来,阿里云数据库会不会把所有能力都开源?”这一问题时,李飞飞给到的回答是:“不会。”
之所以有这样的回答,是因为对于开源,他有着一些判断和看法。
李飞飞表示,这些部分,本就是阿里云数据库的商业化版本。
事实上,业界大多数的数据库厂商都不会针对自身的核心能力开源,如TiDB的核心管控组件、TiFlash。
与像MongoDB,、Cassandra、CouchDB这些以开源起家的数据库厂商不同,开源只是阿里云数据库的战略,不是阿里云数据库的命脉。
前几年,有业内人士表示,在面向开源时,国产数据库首先需要解决信任以及开源知识产权等问题。“开源会让厂商更加认真思考版权还有专利的问题,事实上,选择开源后,对于数据库厂商提出了更高的要求。”
李飞飞认为,开源只是一种选择,数据库开源成功并不代表着商业化就能够成功,不开源也不能代表厂商不先进。
更准确的说,开源只是一种有效手段。
最终,阿里云数据库希望客户能够通过开源版本把阿里云数据库产品技术快速用起来,并能够参与到技术产品的迭代过程中,在一些高阶能力上,借鉴团队专业能力和阿里云的服务能力,成为良好的商业合作伙伴,这是李飞飞以及阿里云数据库对于开源的一些基本思考。雷锋网雷锋网雷锋网
阿里云的主要功能是什么?
阿里云致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。
阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录。
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。
扩展资料:
阿里云主要产品:
1、弹性计算:
云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
负载均衡:对多台云服务器进行流量分发的负载均衡服务
弹性伸缩:自动调整弹性计算资源的管理服务
资源编排:批量创建、管理、配置云计算资源
容器服务:应用全生命周期管理的Docker服务
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
批量计算:简单易用的大规模并行批处理计算服务
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
2、数据库:
云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL
云数据库MongoDB版:三节点副本集保证高可用
云数据库Redis版:兼容开源Redis协议的Key-Value类型
云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应
PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库
云数据库HybridDB:基于GreenplumDatabase的MPP数据仓库
云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库
数据传输:比GoldenGate更易用,阿里异地多活基础架构
数据管理:比phpMyadmin更强大,比Navicat更易用
3、存储:
对象存储OSS:海量、安全和高可靠的云存储服务
文件存储:无限扩展、多共享、标准文件协议的文件存储服务
归档存储:海量数据的长期归档、备份服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
表格存储:高并发、低延时、无限容量的Nosql数据存储服务
4、网络:
CDN:跨运营商、跨地域全网覆盖的网络加速服务
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
高速通道:高速稳定的VPC互联和专线接入服务
NAT网关:支持NAT转发、共享带宽的VPC网关
2018年6月20日,阿里云宣布联合三大运营商全面对外提供IPv6服务。
5、大数据:
MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案。
QuickBI:高效数据分析与展现平台,通过对数据源的连接,和数据集的创建,对数据进行即席的分析与查询。并通过电子表格或仪表板功能,以拖拽的方式进行数据的可视化呈现。
大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的OpenAPI为数据应用开发者提供良好的再创作生态
DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用,满足您日常业务监控、调度、会展演示等多场景使用需求
关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等
推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持A/BTest效果对比
公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势
企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务
数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道
分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索
流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具
6、人工智能:
机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估
语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验
人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块
印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景
7、云安全:
服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全
DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠
Web应用防火墙:网站必备的一款安全防护产品。通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全
加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案
CA证书服务:云上签发Symantec、CFCA、GeoTrustSSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问
数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险
绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本
安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全
云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系
态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案
先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费
移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。
8、互联网中间件:
企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、
消息队列MQ:ApacheRocketMQ商业版企业级异步通信中间件
分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务
云服务总线CSB:企业级互联网能力开放平台
业务实施监控服务ARMS:端到端一体化实时监控解决方案产品
9、分析:
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
云数据库HybirdDB:基于GreenplumDatabase的MPP数据仓库
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
大数据计算服务MaxCompute:TB/PB级数据仓库解决方案
分析型数据库:海量数据实时高并发在线分析
开放搜索:结构化数据搜索托管服务
QuickBI:通过对数据源的连接,对数据进行即席分析和可视化呈现。
参考资料:
百度百科-阿里云
再不懂时序就OUT啦!阿里云数据库InfluxDB正式商业化
阿里云数据库 InfluxDB® 版已于近日正式启动商业化 。 云数据库 InfluxDB® 是基于当前最流行的开源数据库 InfluxDB 提供的在线数据库服务,相比较开源具有免运维,稳定可靠,可弹性伸缩的优势,广泛应用于互联网基础资源监控,容器监控,业务运营监控分析,物联网设备远程实时监控,工业安全生产监控,生产质量评估和故障回溯。提供时序数据自动化采集,压缩存储,类SQL查询,多维聚合计算和数据可视化分析能力。点击关注,InfluxDB 商业化活动
时序数据和企业业务密切相关,不可或缺。任何一家企业都需要一套高效的运维系统保证实时发现应用和业务问题,通过监控,故障告警的手段,进行故障定位,保证在线业务的稳定,减少不可用时常。业务运营人员依赖运营系统,保证有充足的数据进行业务分析判断,便于更准确的做出业务决策。物联网企业和工业企业都需要能够实时掌握设备的运行状态,对生产过程进行监控,实时判故障预警,故障定位,故障回溯以及业务。以上业务场景都需要时序数据作为“数据证据”来表示指标“变化”过程,进而达到告警,诊断,修复和预测的业务目的。
时序数据很简单,构成具有三个要素,主体,时间戳,和指标数据。比如: xxx公司(主体)2019年8月26日上午10时,11时, 12时(时间戳)的股价分别是:160 USD,165 USD,180 USD(指标值)。概括来说,区别于关系数据库关心的是“最终结果”。时序数据表示的是资产或者过程是如何随着时间变化的,体现的是“变化”的过程价值。
时序数据主要应用在:运维监控,运营分析,设备监控,BI分析,工业安全生产监控场景。这些场景上,产生的核心数据是时序数据,业务特征表现在 写多读少 ,无事务性要求,数据分析强关联时间维度,且实时性要求高。
时序数据库针对时序数据业务特征进行针对性的数据存储结构设计,以及存储方式的优化,在监控等时序业务场景下数据的写入,读取,分析能力相比较传统的关系型数据库如 MySQL ,具有百倍的性能提升。
从数据存储架构上看,关系数据库通常按照行来记录一条时间记录数据,且顺序记录之间无主体关联性,单个主体的记录数据随机分散在多行,如果是分布式数据库甚至分布在多个分分库上,记录之间也没有时间顺序组织数据,连续时间戳的数据,分散在不连续的存储上,这样就造成按照主体和时间维度的数据写入和存储的效率大大降低。
而时序数据库按照主体为维度进行数据存储和索引,完全按照业务使用场景组织数据,相同主体指标数据组织在一起,并且按照时间为度进行分片存储,只需要获取主体信息和时间分片信息就可以顺序进行写入和读取操作。单次IO请求磁盘寻道的时间和获取数据量比关系数据库寻道的效率和获取数据量都要高,查询的时间区间越大,查询主体越多,数据越多,效率差异越大,整体性能比关系数据库要高出十倍甚至百倍。
云InfluxDB® 相比较开源InfluxDB 优势明显。 云InfluxDB 提供云服务的方式,有行业顶级的专家支持服务,具有 免安装,免运维,稳定性高,数据高可靠的优势。使用云存储的方案,数据多副本存储,数据可靠性达到99.9999% 。
自建快速迁移上云
云 InfluxDB 提供了快速迁云的工具,只需动动鼠标就可以完成自建InfluxDB 到 云 InfluxDB 的迁移。
类SQL 开发友好,快速上手
阿里云 InfluxDB 完全兼容开源 InfluxDB ,面向开发友好, 为了方便传统关系数据库开发者能够快速适应Influx DB开发, 提供给了类 SQL的查询语言 InfluxQL,在提供强大的时序分析能力的基础上,最大程度的沿用了SQL的开发模式,使得学习成本大大降低。
集成数据采集,搭建监控更简单
阿里云数据库 InfluxDB 继承了 Influx DB 良好的开源生态,具有完整的数据采集,存储和数据可视化监控告警体系 TICK Stack 支撑。 同时相比较开源产品,提供了产品化的数据采集服务,只需在控制台进行几步简单操作,“0” 代码完成各类监控源的监控数据自动采集。
云InfluxDB® 金融高可用版即将推出
服务的高可靠和数据一致性对金融类企业至关重要,开源的InfluxDB 没有提供高可靠的HA 版本,阿里云InfluxDB 针对金融,保险,银行,涉及数据和服务高可靠的研发了 HA高可用版本, 目前正在商业化上线的过程中,不久就可上线提供服务。
云InfluxDB® 商业化限时优惠
阿里云 RDS 怎么保证高可用性
合理的架构
一个大型的、负载的单体应用可能会让你的整个开发进度缓慢、部署困难。所以,为了解决这种问题,不妨在开发初期便将应用程序设计为微服务架构的程序,虽然可能会提升程序之间的沟通难度,但却为你的应用提供了后续自由伸缩的可能,帮你解决后期发展起来的伸缩难题。
对于已经上线的应用,整体微服务化可能是非常困难的,毕竟你不可能让整个团队重新开发一套系统出来,这样的情况下,不妨把核心的、请求量较高的业务单独拆分出来,作为一个服务,让每一个服务都变成专注与单一的责任和功能的小的区块,更好的对外提供服务。
二、资源架构
在云计算的时代,云计算大行其道,为各行各业提供计算能力的支持,合理的利用云计算所提供的能力,就能帮助我们更加轻松的去做好应用的高可用。
一般来说,我们的每一个应用大体上都可以分为四层:入口层、业务层、缓存层、数据库层。当我们做好每一层的优化,那么我们的应用本身对于可能出现的问题进行避免。
入口层
入口层通常的情况下指的是Nginx、Apache等层面的东西,来负责应用的入口。一般情况下,我们会将应用程序定位在某一个IP,那么如果我们这个IP宕机了,就会导致服务的不可用,所以,在入口层我们不妨使用负载均衡,通过对压力的评估和成本的预估以及技术实现的难度,我们可以选择自建负载均衡或者使用云服务商提供的负载均衡器,在这样的情况下,当我们入口层后面的业务出现了单点故障时,可以自动借助于负载均衡的健康检查和请求分发的机制,把请求转发分配到可用的节点,保证服务的正常运转。
业务层
业务层通常是由PHP、Java、Python、Go等写的逻辑代码构成的,需要依赖于后台数据库及一些缓存层面的东西。如何实现业务层的高可用呢看最核心的就是,业务层不要有状态,将状态分散到缓存层和数据库。目前大家通常喜欢将以下几种数据放入业务层。
第一个是session,即用户登录相关的数据,但好的做法是将session放在数据库里,或者一个比较稳定的缓存系统中。
第二个是缓存,在访问数据库时,如果一个查询很慢,就希望将这些结果暂时放到进程里,下次再做查询时就不用再访问数据库了。
一个简单的原则就是业务层不要有状态。在业务层没有状态时,一台业务层服务器当掉了之后,Nginx/Apache会自动将所有的请求打到另外一台业务层的服务器上。由于没有状态,两台服务器没有任何差异,所以用户完全感受不到。如果把session放在业务层里面的话,那么面临的问题是,这个用户以前是登录在一台机器上的,这个进程死掉后,用户就会被登出了。
缓存层
非常简单的架构里是没有缓存这个概念的。但在访问量上来之后,MySQL之类的数据库扛不住了,比如在SATA盘里跑MySQL,QPS到达200、300甚至500时,MySQL的性能会大幅下降,这时就可以考虑用缓存层来挡住绝大部分服务请求,提升系统整体的容量。
缓存层如果希望实现高可用的架构,最好的方案就是将缓存层分的细一些,采用分布式的缓存或者是云计算服务商提供的云缓存能力,来减轻数据库层的压力。
数据库层
在数据库层面实现高可用,通常是在软件层面来做。例如,MySQL有主从模式(Master-Slave),还有主主模式(Master-Master)都能满足需求。MongoDB也有ReplicaSet的概念,基本都能满足大家的需求。
【阿里云数据库高可用】的内容来源于互联网,如引用不当,请联系我们修改。
网友留言: